Monotone finite difference schemes for anisotropic diffusion problems via nonnegative directional splittings∗

نویسندگان

  • Cuong Ngo
  • Weizhang Huang
چکیده

Nonnegative directional splittings of anisotropic diffusion operators in the divergence form are investigated. Conditions are established for nonnegative directional splittings to hold in a neighborhood of an arbitrary interior point. The result is used to construct monotone finite difference schemes for the boundary value problem of anisotropic diffusion operators. It is shown that such a monotone scheme can be constructed if the underlying diffusion matrix is continuous on the closure of the physical domain and symmetric and uniformly positive definite on the domain, the mesh spacing is sufficiently small, and the size of finite difference stencil is sufficiently large. An upper bound for the stencil size is obtained, which is determined completely by the diffusion matrix. Loosely speaking, the more anisotropic the diffusion matrix is, the larger stencil is required. An exception is the situation with a strictly diagonally dominant diffusion matrix where a three-by-three stencil is sufficient for the construction of a monotone finite difference scheme. Numerical examples are presented to illustrate the theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids

We propose two interpolation-based monotone schemes for the anisotropic diffusion problems on unstructured polygonal meshes through the linearity-preserving approach. The new schemes are characterized by their nonlinear two-point flux approximation, which is different from the existing ones and has no constraint on the associated interpolation algorithm for auxiliary unknowns. Thanks to the new...

متن کامل

Antidissipative Numerical Schemes for the Anisotropic Diffusion Operator in Problems for the Allen-cahn Equation

This contribution discusses two attitudes to artificial dissipation reduction in numerical schemes for solving initial boundary value problems for the Allen-Cahn equation with anisotropy incorporated into the diffusion operator. In the first case, a weighted first order finite difference scheme is used for spatial discretization of the anisotropic texture diffusion problem in 2D, designed for v...

متن کامل

Common Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms

In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...

متن کامل

Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations

We present a nonlinear technique to correct a general Finite Volume scheme for anisotropic diffusion problems, which provides a discrete maximum principle. We point out general properties satisfied by many Finite Volume schemes and prove the proposed corrections also preserve these properties. We then study two specific corrections proving, under numerical assumptions, that the corresponding ap...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015